2 research outputs found

    A multithreaded hybrid framework for mining frequent itemsets

    Get PDF
    Mining frequent itemsets is an area of data mining that has beguiled several researchers in recent years. Varied data structures such as Nodesets, DiffNodesets, NegNodesets, N-lists, and Diffsets are among a few that were employed to extract frequent items. However, most of these approaches fell short either in respect of run time or memory. Hybrid frameworks were formulated to repress these issues that encompass the deployment of two or more data structures to facilitate effective mining of frequent itemsets. Such an approach aims to exploit the advantages of either of the data structures while mitigating the problems of relying on either of them alone. However, limited efforts have been made to reinforce the efficiency of such frameworks. To address these issues this paper proposes a novel multithreaded hybrid framework comprising of NegNodesets and N-list structure that uses the multicore feature of today’s processors. While NegNodesets offer a concise representation of itemsets, N-lists rely on List intersection thereby speeding up the mining process. To optimize the extraction of frequent items a hash-based algorithm has been designed here to extract the resultant set of frequent items which further enhances the novelty of the framework

    A genetic algorithm coupled with tree-based pruning for mining closed association rules

    Get PDF
    Due to the voluminous amount of itemsets that are generated, the association rules extracted from these itemsets contain redundancy, and designing an effective approach to address this issue is of paramount importance. Although multiple algorithms were proposed in recent years for mining closed association rules most of them underperform in terms of run time or memory. Another issue that remains challenging is the nature of the dataset. While some of the existing algorithms perform well on dense datasets others perform well on sparse datasets. This paper aims to handle these drawbacks by using a genetic algorithm for mining closed association rules. Recent studies have shown that genetic algorithms perform better than conventional algorithms due to their bitwise operations of crossover and mutation. Bitwise operations are predominantly faster than conventional approaches and bits consume lesser memory thereby improving the overall performance of the algorithm. To address the redundancy in the mined association rules a tree-based pruning algorithm has been designed here. This works on the principle of minimal antecedent and maximal consequent. Experiments have shown that the proposed approach works well on both dense and sparse datasets while surpassing existing techniques with regard to run time and memory
    corecore